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Abstract In many global optimization problems motivated by engineering applications,
the number of function evaluations is severely limited by time or cost. To ensure that each
of these evaluations usefully contributes to the localization of good candidates for the role
of global minimizer, a stochastic model of the function can be built to conduct a sequen-
tial choice of evaluation points. Based on Gaussian processes and Kriging, the authors have
recently introduced the informational approach to global optimization (IAGO) which pro-
vides a one-step optimal choice of evaluation points in terms of reduction of uncertainty on
the location of the minimizers. To do so, the probability density of the minimizers is approxi-
mated using conditional simulations of the Gaussian process model behind Kriging. In this
paper, an empirical comparison between the underlying sampling criterion called conditional
minimizer entropy (CME) and the standard expected improvement sampling criterion (EI)
is presented. Classical test functions are used as well as sample paths of the Gaussian model
and an industrial application. They show the interest of the CME sampling criterion in terms
of evaluation savings.
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1 Introduction

To minimize an expensive-to-evaluate function f , a common approach is to use a cheap
approximation of this function, which can lead to significant savings over traditional methods.
In this context, global optimization techniques based on Gaussian processes and Kriging
(see, e.g., [4]) are often preferred, for they provide an appealing probabilistic framework to
account for the uncertainty on the function approximation. Expensive-to-evaluate functions
are often encountered in industrial optimization problems, where the function value may
be the output of complex computer simulations, or the result of costly measurements on
prototypes.

Most Kriging-based strategies proposed in the past few years (see, e.g., [9] and the refe-
rences therein) implicitly seek a likely value for a global minimizer, and then assume it to be a
suitable location for the next evaluation of f . Yet, making full use of Kriging, it is possible to
explicitly account for the uncertainty on the global minimizers, and the most likely location
of a global optimizer is not necessarily a good evaluation point to improve the accumulated
knowledge on the global minimizers.

Based on these considerations, the Informational Approach to Global Optimization
(IAGO) strategy recently proposed in [20] evaluates f where the potential for reduction
of the uncertainty on the location of the minimizers is deemed to be highest. The entropy
of the conditional distribution of the global minimizers is taken as the uncertainty measure,
and is approximated using conditional simulations of the Gaussian process modeling f . This
approach has two main advantages over classical Kriging-based global optimization methods,
such as the Efficient Global Optimization (EGO) algorithm (see [10]). First, it should lead
to significant savings on the number of evaluations of f . Second, results under the form of
probability distributions are particularly attractive. The purpose of this paper is to evidence
the evaluation savings that can be obtained via the use of IAGO.

EGO and IAGO differ only by the sampling criterion used for choosing the next evalua-
tion point. These two criteria, namely expected improvement (EI) for EGO and conditional
minimizer entropy (CME) for IAGO, undergo a series of numerical experiments. The first
experiments are conducted on four classical test functions. Later on, empirical convergence
rates are estimated using sample paths of a Gaussian process. A final comparison is perfor-
med on a real-case application to the design of intake ports in the automotive industry, for
which a single evaluation of the function to be optimized requires about 10 h of computer
time.

The Kriging framework is briefly recalled in Sect. 2, as well as the definitions of the EI
and CME criteria. A brief description of computational aspects of the IAGO approach is also
presented. Section 3 reports the empirical comparison of these two criteria. Finally, Sect. 4
presents conclusions and offers perspectives for future work.

2 Kriging-based global optimization

Let X, the factor space, be a compact subset of R
d and f : X → R be the function to be

minimized. The objective is to find x∗ a global minimizer of f over X when the evaluation of
f is expensive. To do so, a cheap model of f (also known as surrogate approximation) based
on previous evaluations will be used. Even if deterministic models have been discussed (as
in the response surface methodology, see, e.g., [15]), it is stochastic models that will retain
our attention, and more precisely the Bayesian approach to global optimization (see, e.g.,
[14]). In this framework, f is viewed as a realisation (or sample path) of a stochastic process
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F (F can also be viewed as a Bayesian prior on f ). The distribution of F conditionally to
past evaluation results for f is used to design a sampling criterion to be optimized to choose
an additional evaluation point for f .

When F is Gaussian (we make this assumption in the rest of the paper), the conditional
distribution of F at an untried point is also Gaussian with mean and variance that can be
obtained analytically using Kriging (prediction based on Gaussian processes has been known
for more than 50 years as Kriging in geostatistics and we shall keep to this terminology).
Gaussian models and Kriging have been introduced in the field of Bayesian optimization in
[10], through the Efficient Global Optimization (EGO) algorithm. Since then (see [14] for
an overview of previous work in the field), Gaussian processes and Kriging have been the
object of most publications in the field of Bayesian global optimization, with improvements
of the EGO algorithm (see, e.g., [22] or [8]) and comparative studies (see, e.g. [9] or [17]).
Our contribution to the field is also based on Kriging.

2.1 Linear prediction

In this section, we recall some well-known facts about Kriging on which the rest of the paper
is based (for more details, see [4,20] and the references therein).

Let k(·, ·) be the covariance function of F , and x be a point in X where F is to be
predicted. The mean of F(x) is assumed to be a finite linear combination of known functions
pi of x, m(x) = βTp(x), where β is a vector of fixed coefficients to be computed, and
p(x) = [p1(x), . . . , pl(x)]T. Usually the functions pi are monomials of low degree in the
components of x (in practice, their degrees do not exceed two).

Given the vector fn = [ f (x1), . . . , f (xn)]T of past evaluations at points in Sn =
{x1, . . . , xn} ∈ X

n (a sample value of Fn = [F(x1), . . . , F(xn)]T), the Kriging predic-
tor F̂(x) of F(x) is the minimum-variance unbiased linear predictor in the vector space
span{F(x1), . . . , F(xn)}. It can be written as

F̂(x) = λ(x)TFn , (1)

with λ(x) the vector of Kriging coefficients for the prediction at x.
The vector of coefficients λ(x) is solution of the linear system of equations

(
K P
PT 0

) (
λ(x)

µ(x)

)
=

(
k(x)

p(x)

)
, (2)

with 0 a matrix of zeros, K = (
k(xi , x j )

)
1≤i, j≤n the covariance matrix of F at all evaluation

points in Sn , k(x) = [k(x1, x), . . . , k(xn, x)]T, the vector of covariances between F(x) and
Fn , and

P =
⎛
⎜⎝

p(x1)
T

...

p(xn)T

⎞
⎟⎠ .

The Kriging coefficients at x can thus be computed without evaluating f (x), along with the
variance of the prediction error

σ̂ 2(x) = k(x, x) − λ(x)Tk(x) − p(x)Tµ(x) , (3)
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as these quantities only depend on the covariance of F . Once f has been evaluated at all xi

in Sn , the prediction of f (x) is the conditional mean of F , given by

f̂ (x) = E[F̂(x)|Fn] = λ(x)Tfn,

with Fn = {Fn = fn} the evaluation results. When f is evaluated exactly, Kriging is an
interpolation (∀ xi ∈ Sn, F̂(xi ) = F(xi )). Although noise on the evaluation results could
easily be taken into account in the prediction, in what follows, the evaluations are assumed
to be noise-free (see [20] for the noisy case).

As advocated in [18], the covariance of F is chosen within the Matérn class of covariance
functions (see Appendix, and [20] as well as the references therein for more details on the
choice of a covariance), and the covariance parameters are either set a priori or estimated
from the data using the maximum-likelihood method.

After the evaluations in Sn , f (x) is viewed as a sample path of F that interpolates the data
fn . Such sample paths, known as conditional sample paths, are realizations of F conditionally
to Fn and are essential to the IAGO approach. They represent all the behaviors that are deemed
possible for f given the results of evaluations in Sn . Figure 1a illustrates the relationships
between f , f̂ , σ̂ and the conditional sample paths.

Fig. 1 (a) Conditional sample
paths of F , and corresponding
Kriging prediction. The squares
represent available values of f ,
the bold line is the conditional
mean f̂ as computed by the
Kriging predictor, the dotted lines
provide 95% confidence intervals
for the prediction ( f̂ ±1.96σ̂ ) and
the thin lines are conditional
sample paths. (b) Estimated
conditional minimizer density
(pX∗ (·|Fn)) associated with the
Kriging prediction
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2.2 Kriging-based sampling criteria

Among the many sampling criterion available in the literature, we feel that expected impro-
vement (EI), which has been the object of most publications in the field for the last ten years,
is the most suited for a comparison with the one we proposed in [20].

2.2.1 Expected improvement

This sampling criterion corresponds to a one-step optimal strategy given the Gaussian prior
F on the unknown function f . Let f ∗ = minx∈X f (x) be the global minimum of f , Sn be a
set of n evaluation points in X, and consider Mn = minxi ∈Sn F(xi ) an estimator for f ∗. For
the loss function

L(Sn, F) = Mn − f ∗,

the risk, or expected loss for a candidate point c for the evaluation of f , given the evaluation
results fn , is given by

E(L(Sn ∪ {c}, F)|Fn) = E(min{Mn, F(c)}|Fn) − f ∗. (4)

One can show that minimizing (4) is equivalent to maximizing the EI criterion as presented
for example in [9], i.e.,

EI(c) = E [I (c)|Fn] , (5)

with

I (c) =
{

0 if F(c) ≥ Mn

Mn − F(c) otherwise
.

One can easily rewrite (5) as

EI(c) = σ̂ (c)
[
u�(u) + �′(u)

]
, (6)

with

u = mn − f̂ (c)
σ̂ (c)

,

mn = E[Mn |Fn] = minxi ∈Sn f (xi ) the current estimate of the minimum, and � the normal
cumulative distribution. The new evaluation point is then chosen as a global maximizer of
EI(c).

2.2.2 Conditional minimizer entropy

The IAGO approach is based on two complementary principles, that set it apart from previous
work in Bayesian global optimization. First, a one-step optimal sampling criterion for the
reduction of the uncertainty on the minimizers. Second, the use of Kriging to evaluate this
sampling criterion by approximating the distribution of the minimizers conditionally to past
evaluations. We now briefly present our sampling criterion, and refer to [20] for computational
details.

In [20], conditional entropy has been introduced to measure the information gained on the
minimizers by an additional evaluation of f . This Stepwise Uncertainty Reduction (SUR)
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strategy [6], chooses the point that potentially brings the largest reduction in entropy (seen
as a measure of uncertainty).

More formally, given our Gaussian prior F on the function f to be minimized, the
uncertainty on the minimizer x∗ can be measured by the entropy of the global minimizers

H(X∗) = −
∑
x∈G

pX∗(x)log(pX∗(x)),

with X∗ a random vector uniformly distributed in the set of the global minimizers of F over
a discrete approximation G of X, and pX∗ the point mass density of X∗.

Now, given a vector fn of evaluation results, the uncertainty left on x∗ is the entropy
of pX∗(·|Fn) the point mass density of X∗ conditionally to the evaluation results Fn (or in
short conditional minimizer density),

H(X∗|Fn) = −
∑
x∈G

pX∗(x|Fn)log(pX∗(x|Fn)).

The idea of the IAGO strategy is iteratively to ensure a one-step optimal reduction of the
entropy of this distribution.

The risk associated with a candidate evaluation at c ∈ X is then chosen as the entropy
of the global minimizers conditionally to the potential result of an evaluation at c (in short
CME for conditional minimizer entropy)

Hn(c) = H(X∗|Fn, F(c)),

and the evaluation is performed at

xn+1 = arg min
c∈X

Hn(c).

From the definition of conditional entropy [5], we can write

Hn(c) =
∫

y∈R

pF(c)(y|Fn)

(
−

∑
x∈G

pX∗(x |Fn, F(c) = y) log(pX∗(x |Fn, F(c) = y))

)
dy,

(7)

with pF(c)(·|Fn) the distribution of F(c) and pX∗(·|Fn, F(c) = y) the distribution of X∗
conditionally to Fn and {F(c) = y}. The CME Hn(c), as written in (7), can be viewed as
an expected loss, the loss function being the entropy of pX∗(·|Fn, F(c) = y) the conditional
minimizer density after n + 1 evaluations.

2.2.3 Practical aspects

The distribution pF(c)(·|Fn) is Gaussian, with mean and variance simply obtained by
Kriging. There is, however, no result in the literature that we can use to describe analyti-
cally any useful property of the conditional minimizer density. To compute (7), we resort
to an approximation that is conducted via Monte–Carlo simulations of F conditionally to
available evaluation results Fn and to a potential evaluation result y at c (this approxima-
tion as well as recommendations for the choice of G are described in details in [20]). This
approximation leads to a complexity in O(N ) for the computation of Hn(c), with N the size
of the discrete approximation of X. Note that in IAGO the conditional minimizer density is
thus available at each step and provides (at least for low-dimensional problems) a clear view
of the progress achieved in the optimization process (cf. Fig. 1b).
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In the Bayesian optimization framework, the expensive-to-evaluate function is replaced
by a cheap criterion, updated after each evaluation, which has to be optimized for a new
evaluation point to be chosen. Up to now, we have focused on the choice of criterion, but no
attention has been paid to the entire procedure for global optimization, including for example
an update process for the Kriging prediction. To keep this paper focused on a comparison
between sampling criteria, we shall only mention the classical framework of the Efficient
Global Optimization (EGO) (Algorithm 1).

EGO (see, e.g. [10]) starts with a small initial design used to get a first estimate of the
parameters of the covariance and to compute a first Kriging model. Based on this model, an
additional point is selected in the design space to be the location of the next evaluation of f
in order to maximize the EI criterion. The parameters of the covariance are then re-estimated,
the Kriging model is re-computed, and the process of choosing new points continues until
the improvement expected from sampling additional points has become sufficiently small.
The CME criterion can easily be inserted in a similar algorithm in place of EI to transform
EGO into IAGO.

Algorithm 1: Efficient global optimization framework
Input: Initial design of evaluation points and corresponding values of f
Output: Additional evaluations
1. while the evaluation budget is not exhausted or some other convergence condition is not

satisfied
2. do Estimate the parameters of the covariance
3. Compute the Kriging model
4. Optimize the sampling criterion (EI or CME here)
5. Evaluate f

3 Empirical comparison between EI and CME

As presented in the previous section, EI and CME are both Kriging-based sampling criteria
and both one-step optimal in some sense. CME should lead to faster convergence rates, and
this for three major reasons.

First, EI aims at estimating the minimum, while CME concentrates on the minimizers.
The search is therefore likely to be more global when based on the latter. Second, EI aims at
improving the estimation of the minimum by sampling where its appearance is most probable.
It seems more reasonable to try diminishing the uncertainty associated with its position. For
example, it might be excessively costly to refine the estimation in a small neighborhood
of a potential minimum, which may only be local, while evaluations using Hn could show
that a large part of the search space has a very low probability of containing the global
minimizer (this idea will be confirmed in Sect. 3.3). Third, the computation of CME involves
the statistical properties of the sample paths of F , while, by contrast the computation of
E I involves only the conditional mean and variance of F at c. A more thorough use of the
available information on the function is indeed appealing in this context of expensive, and
therefore sparse, evaluations.

To substantiate these intuitions, a comparison of EI and CME is in order.

3.1 Experimental conditions

To make this comparison fair, we propose to study the behaviors of EI and CME independently
from the covariance choice (step 2 in Algorithm 1) and from the optimization method to be
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used to optimize the sampling criteria (Step 4 in Algorithm 1). These aspects are quite
complex, and ad-hoc strategies have been proposed in the literature (see [9] for an example
of optimization method for the sampling criteria). However, our first objective here is to
motivate the choice of a sampling criterion.

Therefore, we conducted our experiments using the same Matérn covariance with the same
values, fixed a priori, for the covariance parameters. The set G of potential evaluation points
was identical for both criteria, and the choice of the next evaluation point was carried out via
an exhaustive computation of the relevant sampling criterion over this set. The question to
be addressed in what follows then boils down to the following interrogation: given the same
prior information on the function, which sampling criterion chooses the best point (in a sense
to be discussed later) amongst a finite set of possible evaluation points?

3.2 Tests on classical benchmarks

The four test functions used in this section are taken from [8], where a comparison was
conducted between EI and classical global optimization schemes such as DIRECT (see, e.g.,
[16]). The problem dimensions range from two to five, and all functions present several local
minimizers (see Table 2 in Appendix). The covariance parameters are estimated beforehand
on the results of 200 evaluations randomly chosen in search space (using a latin hyper cube
sampler), and the two criteria are optimized over a latin hyper cube design containing 1,000
points randomly re-sampled after every evaluation.

A single point x1is randomly chosen in search space as a common starting point for both
criteria, and 50 runs are conducted for each function to reduce the dependency on the starting
point. After the i th evaluation of f , the efficiency of each criteria is measured by

Gi = f (x1) − mi

f (x1) − f ∗ ,

with mi = minx∈{x1,...,xi } f (x) the current estimate of the global minimum. Gi (a modified
version of the quality measure used in [2]) thus describes the reduction, after i iterations of
the optimization process, of the initial estimation error for the global minimum f (x1) − f ∗.
Table 1 presents, for each criterion, the averaged efficiency after 20, 50 and 100 evaluations.
EI beats CME for the Ackley 5 function when i = 40, but for the other three test functions
CME converges faster towards the optimum than EI, and significantly so for the Hartman 3
function.

Table 1 Comparison of expected improvement and conditional minimizer entropy on four test functions
taken from [8]a

Gi when points are chosen using EI Gi when points are chosen using CME

i = 20 i = 50 i = 100 i = 20 i = 50 i = 100

Six-Hump Camel Back 0.65 1 1 0.76 1 1
Tilted Branin 0.83 0.92 0.98 0.89 0.95 0.97
Hartman 3 0.64 0.98 1 0.82 0.99 1
Ackley 5 0.36 0.75 0.73 0.34 0.59 0.72

a For each criterion, the convergence measure Gi is averaged over 50 runs (the estimated standard error for
the estimation of these figures is always smaller than 0.01); significantly better performances are indicated in
bold

123



J Glob Optim (2009) 43:373–389 381

3.3 Tests on Gaussian process simulations

Even if a comparison on classical test functions gives some perspectives on the qualities of
each of the criteria, the variability of the results from one test problem to the next may be
significant, so one can hardly use them to decide beforehand which sampling criterion to use
on a specific problem. It therefore would be best to derive some analytical convergence rates
for both criteria under reasonable hypotheses on the function to be optimized. In our context
of expensive-to-evaluate functions, these convergence rates would have to be non-asymptotic,
and we do not know of any such results in the literature. However, the probabilistic framework
considered here makes it possible to estimate empirical convergence rates. Since the function
to be optimized is assumed to be a sample path of a Gaussian process, we can estimate the
convergence rates with both criteria when optimizing sample paths of a Gaussian process
whose covariance is the same as that chosen for the optimization algorithm.

For the sake of brevity, we shall limit our presentation to two Gaussian processes, one
with very smooth sample paths, and the other with irregular sample paths.

Two sets of 1,000 sample paths were generated over a regular grid of 1,500 points in
[0, 1]2. Fifteen evaluations are then performed on each sample paths using both criteria. After
each new evaluation, and for each criterion, estimation errors are computed for the global
minimum and the minimizer, as well as the entropy of the conditional minimizer density. Two
estimators of the global minimum are considered here, namely mn = minx∈{x1,...xn} f (x),
the best evaluation result obtained so far, and

m̃n = f̂ (arg max
x∈G

pX∗(x|Fn)),

the predicted value associated with the point where the conditional minimizer density is the
highest. The average convergence rates for irregular sample paths are presented on Fig. 2a in
terms of the entropy of the conditional minimizer density, on Fig. 2b in terms of the estimation
error for mn , and on Fig. 2c in terms of the estimation error for m̃n .

As expected, since the entropy of the conditional minimizer is the loss function behind
CME, CME performs significantly better than EI in terms of the entropy of the conditional
minimizer density and, in average, the uncertainty on the positions of the global minimizers
diminishes faster if points are chosen using CME (cf. Fig. 2a). This fact was guaranteed for
the first evaluation since CME is one-step optimal for this loss function, but it had to be
checked for several evaluations.

Similarly, if the convergence is measured by the estimation error mn − f ∗, EI is bound to
perform better if we consider only the first evaluation, since the convergence measure is the
loss function behind EI. However, it appears that after 15 evaluations, the performance of EI
and CME are similar (cf. Fig. 2b), suggesting that even if EI is one-step optimal, in the long
run, CME will bring the largest reduction for mn − f ∗ (this is confirmed by computations,
not presented here, with a larger number of evaluations).

EI would thus seem to be a better criterion in a context where very few evaluations are
allowed. However, mn is actually a rather poor estimator of the global minimum, and it
appears that when a faster-to-converge estimator, namely mn , is used instead of mn , CME
performs significantly better than EI (Fig. 2c), and this right form the start. CME should
therefore be preferred to EI when one is confronted with irregular sample paths, since it
allows a better estimation of f ∗.

If we look at what happens on a typical sample path (see Fig. 3), the drawbacks of EI are
clearly evidenced. As intuitively stated at the beginning of the section, EI stalls on a local
optimum because with (4) as a loss function, it is better to ensure a small improvement near
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Fig. 2 Convergence rates using
EI (dotted line) and IAGO (bold
line), when convergence is
measured by H(X∗|Fn) (a), by
the estimation error for the global
minimum with (mn+mn ) as an
estimator (b), by the estimation
error for the global minimum
with m̃n as an estimator (c). The
convergence measures are
averaged over 1,000 sample paths
of a Gaussian process with a
Matérn covariance with
parameters ν = 1, ρ = 0.3 and
σ = 1 (see Appendix 5.1). The
dash-dotted line represents, as a
reference, the convergence rate
for a random choice of evaluation
points
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a minimum already found than to check that it is effectively a global minimum. In the case
of irregular sample paths this might be highly dangerous, and IAGO performs better simply
because it first addresses the question of whether a minimizer is global before improving
the precision on its exact position. When the sample paths are more regular, this advantage
diminishes (cf. Fig. 4), as the local optimizers are scarcer.
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Fig. 3 Minimization of a sample path from the Gaussian process used to evaluate the convergence rates of
Fig. 2. The dots indicate the evaluation points chosen by EI. The crosses indicate the evaluation points chosen
by CME. The order in which the evaluations are carried out is also indicated for CME

A significant problem is left aside here, namely what happens in practice if the parameters
of the covariance are poorly estimated? Does the optimization strategy still perform well?
Robustness to a poor choice of covariance parameters is of course a major issue but it is not
considered here.The EI and CME criteria should have similar robustness properties and may
both be deceived by a poor choice of covariance as demonstrated in [9]. We feel that this
problem should be tackled from a Bayesian point of view, with some prior on the covariance
parameters. This will be done in future work, where we shall compare an extended version
of IAGO to the methods in [9] designed to be robust to a poor choice of covariance.

3.4 Test on an industrial application: intake port design

This section presents an industrial optimization problem in the automotive field, also used
for the comparison of CME and EI.

3.4.1 Problem description

Intake ports (Fig. 5) are engine components that convey a mixture of air and fuel to the
combustion chambers. The importance of this type of component lies in the properties of the
flow it induces in the combustion chamber, which has a direct impact on both the performance
and the emissions of pollutants by the engine. To comply with new emission standards
(Euro V and Euro VI), while satisfying the ever increasing need for engine performance,
the shape of intake ports has to be carefully optimized. Two often-conflicting objectives
have to be maximized simultaneously, namely the flow rate and a scalar characteristic of
the turbulent flow known as tumble [13]. Physics tells us that the higher the flow rate, the
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Fig. 4 Convergence rates using EI (dotted line) and IAGO (bold line), when convergence is measured by
H(X∗|Fn) (a), and when convergence is measured by the estimation error for the minimum with m̃n as
estimator (b). The dash-dotted line represents, as reference, the convergence rate for a random choice of
evaluation points. The sample paths used here are smoother than those used for Fig. 2 (the parameter for the
Matérn covariance are ν = 5, ρ = 0.3 and σ = 1)

larger the amount of fuel that can be burnt, and consequently the larger the power delivered
by the engine. Similarly, pollutants as nitrogen oxides (NOx ) and carbon monoxide (CO)
are, to a large extent, created when the air/fuel mix is not homogeneous. Therefore, the
larger the turbulence (and tumble accounts for the relevant properties of it), the smaller the
pollution.

The specifications for these two objectives are liable to change during conception. The-
refore, it is important to determine not only an optimal geometry for a given set of prefe-
rences but rather the full Pareto front. However, building prototypes for tests is exceedingly
expensive, and each flow simulation by finite-element methods takes about 10 h on powerful
servers. The approach advocated in this paper is therefore particularly attractive given the
general will for reduction of duration and cost associated with development.

123



J Glob Optim (2009) 43:373–389 385

Fig. 5 Intake port. The
component itself is in the middle.
Below is the combustion
chamber. The upper cylinder is a
tranquilizing volume necessary
for the convergence of
finite-element simulations

3.4.2 Computational issues

To extend our sampling criteria to a multi-objective problem, we use a standard procedure
and consider several linear combinations of the objective functions (a.k.a. aggregations),
each accounting for a different zone of the Pareto front. In [11], this approach has been
used to extend the EI criterion to a multi-objective problem by randomly selecting a new
aggregation after each evaluation of f . In this paper, we follow the same route, but use the
IAGO framework to compute the entropy of the conditional density of the minimizers for
the mono-objective optimization problem corresponding to each aggregation in a given set.
The search can thus be directed towards the most uncertain regions of the Pareto front.

The resulting multi objective extensions of CME and EI have been applied to the optimi-
zation of six shape parameters of an intake port (these parameters are not detailed here for
confidentiality reasons). To improve the number of simulations achievable in a given time,
the geometry and mesh are automatically generated for each finite-element simulation. The
optimization algorithm is then directly interfaced with the solver, limiting human intervention
to the initialization of the procedure.

The initial value for the parameters of the Matérn covariance are estimated on simulations
that have been collected during the design of previous intake ports. It thus becomes possible
to initialize the algorithms with very few randomly chosen points (here with five points).

One thousand candidate points are used (N = 1, 000) and the parameters of the Matèrn
covariance are fixed.

3.4.3 Results

For comparison purposes, simulations were conducted for twenty intake ports whose para-
meters were chosen using EI, CME, or a Latin Hyper Cube (LHC) as a reference. The
Pareto-optimal points within each of the three sets of evaluation results are presented in
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Fig. 6 Results of 20 evaluations randomly chosen using an LHC (dots), or optimally chosen by CME (crosses)
or by EI (squares). For CME and EI, only the Pareto-optimal points are presented. For LHC, a larger dot size
indicates points that are, within the considered set of points, Pareto-optimal. Tumble and flow rate have been
rescaled for confidentiality reasons. The dashed lines delimit the set of points that are dominated by the Pareto-
optimal points obtained using CME and which dominate the “worst point”, i.e. the point with worst values
attained for both objectives

Fig. 6. Comparison between sets estimates of Pareto fronts is a tricky process, which may
involve various quality measures [12]. Here however, the comparison is clearly in favor of
CME, as demonstrated by the following three indicators

– Among all evaluation results, the point closest to an “ideal” solution (i.e. with best value
yet obtained for both objectives, here [−0.97,−1.97]T) has been chosen by CME.

– All but one point chosen by EI are dominated by points chosen by CME. In other words,
almost any good solution found by EI is bettered by a solution found by CME.

– The volume of the set of points dominated by the Pareto-optimal points (cf. [12] for
details on this quality measure) is 0.31 for CME (this volume is represented on Fig. 6 by
the dash-dotted line), while it is only 0.26 for EI (the reference for the computation is the
point with worst values attained for both objectives as coordinates).

This test case confirms that Bayesian global optimization is easily applicable to an indus-
trial problem, even with a very small evaluation budget. The interest of CME is apparent
after only a few evaluations, as predicted by the convergence rates of Sect. 3.3.

3.5 Computational burden

The comparison made so far dealt only with convergence rates. The superiority of CME
over EI was demonstrated for sample paths of Gaussian random processes, at least for two
very different regularities of the sample paths (cf. Sect. 3.3), while the convergence rates are
generally in favor of CME when applied to some classical test functions (cf. Sect. 3.2) or to
an actual industrial problem (cf. Sect. 3.4). However, EI is easier to compute since it only
requires the mean and variance of the prediction at the candidate point, while the complexity
of the computation of IAGO is in O(N ), with N the size of a discrete approximation of X

used for the estimation of the conditional density.
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In practice, with our implementation of IAGO (cf. [20]) around 40s are required on an
AMD Opteron 285 server to choose an additional evaluation point for the sample paths of
Sect. 3.3 (by extensive computation of Hn over 1,500 candidate points, which is enough in
practice since this set is randomly re-sampled after each evaluation). By comparison, choo-
sing a point with EI takes less than half a second under the same conditions. To broaden
the range of potential applications, we tried to limit the computational expense by testing
other approximations for the conditional minimizer density (since the manipulation of sample
paths, necessary for the approximation proposed here, is responsible for most of the com-
putational burden). We proposed, for example, to estimate the derivatives of f by Kriging
(as in, e.g., [19]) and to compute the probability for a given point to be a local optimum and
under a certain threshold. It was then easy to build a relatively accurate approximation of the
conditional minimizer density, but the approximation had a detrimental effect on the conver-
gence rate, so that EI then became more efficient. In fact, the quality of the approximation
of the conditional minimizer density is important for CME to perform better than EI.

IAGO therefore remains destined to the optimization of functions that require a large
amount of computer time (or more generally a significant expense) to be evaluated, which is
after all what it was designed for and is the case in many applications in the industrial world
including the one we presented here.

4 Conclusions and perspectives

In this paper, we have evidenced a clear superiority of CME over EI, especially when the
function to be optimized is irregular. The comparison has been conducted using classical
test functions and an actual industrial application, but above all using sample paths of the
model behind Kriging. The use of sample paths indeed allows the computation of empirical
convergence rates that can also be useful to tune other components of any Kriging-based
algorithms (e.g., the optimization of the sampling criterion). Now that the interest of the
CME criterion has been demonstrated, attention should turn to other crucial aspects of any
Kriging-based optimization algorithm. One of these aspects is the improvement of robustness
against a bad choice of covariance for the Gaussian process model. We feel that the Bayesian
framework that we have used until now should also be useful in this respect.

5 Appendix

5.1 Matèrn covariance

In this paper, we follow Stein (1999) and use the isotropic Matérn covariance:

k(x, y) = k(h) = σ 2

2ν−1�(ν)

(
2ν1/2h

ρ

)ν

Kν

(
2ν1/2h

ρ

)
∀ (x, y) ∈ X

2 , (8)

with h the Euclidean distance between x and y, and Kν the modified Bessel function of
the second kind [23]. The parameters of this covariance are easy to interpret, as ν controls
regularity, σ 2 is the variance (k(0) = σ 2), and ρ represents the range of the covariance,
i.e., the characteristic correlation distance. They can either be fixed using prior knowledge
on the system, or be estimated from experimental data. In geostatistics, estimation is carried
out using the adequacy between the empirical and model covariance (see, e.g., [4]). In other
areas, cross validation (cf. [21]) and maximum likelihood (cf. [18]) are mostly employed.
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Table 2 Test functions to be minimized [8]

Name Description

Six-Hump Camel Back [3] d = 2
f (x) = 4x2

1 − 2.1x4
1 + 1/3x6

1 + x1x2 − 4x2
2 + 4x4

2−1.6 ≤ x1 ≤ 2.4,−0.8 ≤ x2 ≤ 1.2
Nlocal = 6, Nglobal = 2
x∗ = [0.089, 0.713]T and [0.089, 0.713]T, f ∗ = −1.03

Tilted Branin [8] d = 2

f (x) =
(

x2 − 5.1
4π2 x2

1 + 5
π x1 − 6

)² + 10
(

1 − 1
8π

)
cos x1 + 10 + 0.5x1

−5 ≤ x1 ≤ 10, 0 ≤ x2 ≤ 15
Nlocal = 3, Nglobal = 1
x∗ = [−3.2, 12.3]T f ∗ = −1.17

Hartman 3 [7] d = 3

f (x) = − ∑4
i=1 di exp

[
−∑3

j=1 αi j (x j − pi j )
]
,

where α =
⎛
⎜⎝

3 10 30
0.1 10 35
3 10 30
0.1 10 35

⎞
⎟⎠ d =

⎛
⎜⎝

1
1.2
3
3.2

⎞
⎟⎠ p =

⎛
⎜⎝

0.3689 0.1170 0.2673
0.4699 0.4387 0.7470
0.1091 0.8732 0.5547
0.03815 0.5743 0.8828

⎞
⎟⎠

0 ≤ xi ≤ 1, i = 1, 2, 3
Nlocal > 1, Nglobal = 1
x∗ = (0.114, 0.556, 0.852)T, f ∗ = −3.86

Ackley 5 [1] d = 5

f (x) = −20 exp[−0.2
√

1
d

∑d
i=1 x2

i ] − exp[ 1
d

∑d
i=1 cos(2πxi )] + 20 + e

∀i ∈ [[1, 3]] − 32.8 ≤ xi ≤ 32.8
Nlocal > 1, Nglobal = 1
x∗ = 0, f ∗ = 0

For simplicity and generality reasons (cf. [18]), the maximum-likelihood method is preferred
here.

5.2 Test functions

Table 2 describes the test functions that have been used. In this table, d stands for the
dimension of the factor space, Nlocal for the number of local minimizers and Nglobal for the
number of global minimizers.
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